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Abstract
The objective of the present study is to determine the relationship between maternal and cord blood acylcarnitine lev-
els and preterm birth. A retrospective cohort study was completed in Tucuman province, Argentina, consisting of 150 
preterm (23 to 36 weeks) and 150 term (39 to 40 weeks) mother/infant dyads. Free carnitine and acylcarnitines were 
measured by tandem mass spectrometry. The relationship between preterm birth and acylcarnitine profile was assessed 
by univariate and multiple logistic regressions. Maternal and cord blood metabolites were compared using linear re-
gression. Relationship between maternal and cord blood metabolite levels, as well as the ability of metabolite levels to 
discriminate between preterm and term birth, were analyzed. Univariate logistic regression performed on maternal and 
cord blood metabolite levels revealed marginally significant changes in acylcarnitines, with distinct patterns in term vs 
preterm infants. Linear regression revealed correlation between maternal and cord blood metabolite levels within the 
cohort as a whole, as well as the infants stratified by term and preterm status. Logistic regression was used to model 
preterm birth status by maternal, cord blood and a combination of maternal/cord metabolite levels. The combination 
model discriminated between preterm and term birth with an area under the curve of 0.751. Acylcarnitine values vary 
significantly between the term and preterm infant. Preterm birth status was modeled successfully by a combination of 
maternal and infant metabolite values. Specific maternal metabolites may stratify preterm vs term status. The ability of 
maternal whole blood metabolite data to delineate term vs preterm status bears further investigation. 
Keywords: Preterm Birth; Acylcarnitine values; maternal/cord metabolite levels

Introduction

In the United States, early ultrasound dating coupled with last menstrual period remains 
gold standard for gestational age (GA) estimation[1]. In countries with limited access to 
prenatal care, birthweight and/or examinations of physical characteristics are commonly 
used to determine GA[2]. Imprecision in estimates of GA and difficulty in differentiating 
preterm status from small for gestational age infants are particularly burdensome in low 
and middle income countries (LMIC), where ultrasound services are often unavailable for 
accurate gestational dating of pregnancies[3]. In order to appropriately allocate resources, 
it is important to delineate the burden of preterm birth in candidate LMIC. Recently, 
our group and others have provided models for estimating GA at birth by evaluating 
newborn metabolic profiles[4-7]. We have shown that newborn metabolic profile, as de-
tected by routine newborn screening, accurately predicted GA to the same degree as birth 
weight alone and to a better degree than birth weight alone in small for GA neonates[5]. 
Identified metabolic differences between term and preterm infants may be attributed in 
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part to their differential degree of illness[8], renal[9] and hepatic[10] 
maturity, and use of parenteral nutrition[11,12], all of which may 
contribute to differential uptake and detoxification of nutrients. 
As newborn metabolite profile can be readily obtained from cord 
blood, urine, serum, dried blood spot, and even blood from the 
infant’s mother, it may be of use in low-resource settings. Uti-
lizing banked blood specimens may be particularly relevant for 
accurately estimating the burden of preterm birth in LMIC. 
 Previous studies of GA estimation with metabolites 
have focused on large populations in developed countries us-
ing metabolites measured at 24-72 hours of life[4,5,7]. Few studies 
have assessed the association between maternal and cord blood 
metabolite levels and preterm birth status within a low-resource 
setting. This study was conducted to determine the relation-
ship between maternal and cord blood acylcarnitine levels and 
preterm birth within a cohort of Argentinian women. 

Material and methods

We conducted a retrospective analysis of mother-infant dyads 
delivered at Maternity Institute Nuestra Senora de las Mercedes 
in Tucuman province, northwestern Argentina, between 2005 
and 2015. All mothers who presented in labor were approached 
for study entry. Blood samples were collected at delivery from 
consenting individuals and paired with infant cord blood sam-
ples. Paired maternal and cord blood samples were selected for 
150 preterm deliveries (<37 completed weeks gestation) and 150 
term deliveries (39-40 weeks). All selected mother-infant dyads 
were singleton pregnancies not affected by maternal diabetes. 
When available, GA was determined by prenatal ultrasound 
(n=31). GA was otherwise determined by postnatal physical ex-
amination (n=269). 
 Maternal blood was drawn in the delivery room, fol-
lowing delivery of the infant. Banked frozen maternal and cord 
blood stored at -80C was thawed at room temperature and spot-
ted on Whatman 903 filter paper and dried at room temperature. 
Free carnitine and 31 acylcarnitines were measured by tandem 
mass spectrometry at the State Hygienic Laboratory (University 
of Iowa). Tandem mass spectrometry is performed with Waters 
Quattro Micro triple quadrupole tandem mass spectrometers, 
equipped with an electrospray ionization source operated in the 
positive ion mode. Screening procedures in Iowa are based on 
previously established methodology[13,14]. All cord blood carni-
tine and acylcarnitine levels were within the ranges previously 
shown within an Iowa cohort (data not shown), using the same 
procedures as described above. Amino acids were also mea-
sured; however, levels of these metabolites were 11 times higher, 
on average, for the Argentina samples than previously measured 
Iowa samples. This could be due to sample storage and handling 
procedure differences. It is well established that some metabo-
lites can be sensitive to storage and handling procedures[15,16]. All 
amino acids were therefore excluded from analysis. 
 
Statistical Analysis: Demographic and clinical characteristics 
of the study population were compared between preterm and 
term deliveries using Fisher’s exact tests for dichotomous and 
categorical exposures and Wilcoxon-Mann-Whitney non-para-
metric tests for continuous exposures. All metabolite values 
were natural log transformed to account for the non-normality. 

Normality of the transformed variables was assessed visually us-
ing histograms and QQ-plots. 
 Maternal and cord blood metabolite measurements 
were compared between preterm and term deliveries using uni-
variate logistic regression. Related odds ratios were computed 
along with their 95% confidence intervals. 
 We performed multiple logistic regressions model-
ing with preterm birth status as the outcome measure, using 
log-transformed metabolites that were significant in the univar-
iate analysis. Three separate models were built using maternal 
metabolite measurements only, cord blood metabolite measure-
ments only, and a combination of maternal and cord blood me-
tabolite measurements. We evaluated the performance of our 
models using Receiver Operator Characteristic (ROC) curves 
and corresponding Area under the curve (AUC). ROC curves 
were compared using the DeLong, DeLong, and Clarke-Pearson 
method[17]. Sensitivity and specificity were calculated for each 
model. 
 The association between maternal and cord blood me-
tabolite measurements were evaluated using general linear re-
gression. P-values and coefficients of determination (R2) were 
presented for each regression model within the total population 
and preterm/term subgroups separately. Bonferroni correction 
was applied to correct for number of analyses performed. Sta-
tistical analyses were conducted using SAS 9.3 software (SAS 
Institute, Cary, NC). Methods and protocols for this study were 
approved by the University of Iowa Institutional Review Board. 

Figure 1:  Preterm birth predicted best by model employing both ma-
ternal and cord blood metabolite levels

Results

Cord blood and maternal samples were analyzed for 150 preterm 
and 150 term mother-infant dyads. Demographic information for 
the cohort is presented in table 1. Preterm infant GA ranged from 
23-36 weeks (median 34 weeks), while term infant GA ranged 
from 39-40 weeks (median 40 weeks). Median birthweight in 
the preterm group was 1900 g, and 3478 g in the term group. 
Preterm infants were more often born via vaginal delivery than 
their term counterparts. 
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Table 1: Demographic and clinical characteristics of study population.
Characteristic Total Population (n=300) Preterm  (n=150) Term (n=150) p-value
Gestational age (weeks) 36.3 ± 3.9 33.1 ± 2.9 39.6 ± 0.5 <0.001*
Sexǂ 0.382
Male 167 (55.7) 88 (58.7) 79 (52.7)
Female 131 (43.7) 62 (41.3) 69 (46.0)
Unknown 1 (0.3) 0 (0) 1 (0.7)
Birth Weight (g) 2691. ± 9478 1903 ± 594 3507 ± 388 <0.001*
Delivery modeǂ 1.000
Cesarean Section 12 (4.0) 8 (5.3) 4 (2.7)
Vaginal 162 (54.0) 109 (72.7) 53 (35.3)
PPROMǂ <0.001*
 Yes 83 (27.7) 83 (55.3) 0 (0)
  No 47 (15.7) 15 (10.0) 32 (21.3)

 
g= grams; cm= centimeters; PPROM= preterm premature rupture of membranes
ǂData are expressed as N (%).  All other data are expressed as mean ± SD.
*Statistically significant at α<0.05.

 Maternal and cord blood metabolite measurements were compared by univariate logistic regression in term and preterm in-
fants (Table 2). No significant differences were found based upon the Bonferroni corrected alpha level of 0.0016. However, margin-
ally significant differences (0.0016 < α< 0.05) in maternal blood metabolite levels were observed for free carnitine, the short chain 
acylcarnitine C3, the medium chain acylcarnitines C6-DC and C8:1, and the long chain acylcarnitine C12. Marginally significant 
differences were observed in cord blood levels of the short chain acylcarnitines C4, C4-DC, C4-OH, C5, and C5:1, C5-DC, and the 
medium chain acylcarnitine C6-DC.

Table 2: Comparison of term and preterm metabolite levels within maternal and cord blood samples.
Metabolite 
(µmol/L)

Maternal Cord
Term 

Median (IQR)
Preterm 

Median (IQR)
OR (95% CI) Term 

Median (IQR)
Preterm 

Median (IQR)
OR (95% CI)

C0 19.435 
(16.270-22.320)

21.010 
(17.090-26.830)

3.22 (1.49-6.99)* 19.865 
(6.300-29.530)

21.700 
(12.260-32.050)

1.09 (0.94-1.26)

C2 4.185 (2.400-6.440) 3.930 (2.340-5.880) 0.96 (0.71-1.29) 17.920
 (6.990-33.420)

15.565 
(4.950-26.540)

0.85 (0.69-1.06)

C3 0.320 (0.210-0.450) 0.380 (0.250-0.520) 1.52 (1.04-2.21)* 0.325 (0.080-0.580) 0.280 (0.080-0.760) 1.03 (0.88-1.20)
C3-DC 0.020 (0.020-0.030) 0.020 (0.010-0.030) 0.63 (0.39-1.01) 0.020 (0.020-0.030) 0.030 (0.020-0.030) 1.06 (0.72-1.55)
C4 0.090 (0.070-0.120) 0.100 (0.080-0.130) 1.61 (0.97-2.68) 0.135 (0.090-0.210) 0.185 (0.090-0.270) 1.35 (1.02-1.79)*

C4-DC 0.100 (0.060-0.140) 0.120 (0.070-0.180) 1.31 (0.91-1.87) 0.080 (0.060-0.130) 0.070 (0.050-0.110) 0.60 (0.40-0.89)*

C4-OH 0.040 (0.030-0.050) 0.040 (0.030-0.050) 1.05 (0.63-1.76) 0.070 (0.040-0.120) 0.090 (0.050-0.190) 1.36 (1.06-1.75)*

C5 0.060 (0.040-0.080) 0.060 (0.050-0.090) 1.29 (0.79-2.09) 0.110 (0.070-0.160) 0.145 (0.080-0.230) 1.48 (1.12-1.96)*

C5:1 0.020 (0.020-0.030) 0.020 (0.020-0.030) 0.78 (0.50-1.23) 0.030 (0.020-0.040) 0.030 (0.020-0.040) 1.64 (1.02-2.65)*

C5-DC 0.020 (0.010-0.020) 0.020 (0.010-0.020) 0.89 (0.53-1.50) 0.010 (0.010-0.020) 0.020 (0.010-0.020) 1.89 (1.12-3.21)*

C5-OH 0.110 (0.080-0.150) 0.130 (0.100-0.160) 1.19 (0.73-1.95) 0.120 (0.090-0.160) 0.140 (0.100-0.190) 1.39 (0.89-2.15)
C6 0.020 (0.020-0.030) 0.020 (0.020-0.030) 1.05 (0.67-1.66) 0.030 (0.020-0.040) 0.030 (0.020-0.040) 1.22 (0.82-1.81)
C6-DC 0.020 (0.010-0.030) 0.020 (0.01-0.020) 0.45 (0.28-0.75)* 0.020 (0.010-0.020) 0.010 (0.010-0.020) 0.42 (0.23-0.77)*

C8 0.020 (0.020-0.030) 0.020 (0.010-0.030) 0.83 (0.57-1.21) 0.010 (0.010-0.020) 0.015 (0.010-0.020) 1.37 (0.89-2.10)
C8:1 0.030 (0.020-0.040) 0.030 (0.020-0.040) 0.53 (0.32-0.87)* 0.020 (0.020-0.030) 0.020 (0.010-0.030) 0.94 (0.60-1.48)
C10 0.020 (0.020-0.030) 0.020 (0.010-0.030) 0.83 (0.57-1.21) 0.020 (0.010-0.020) 0.010 (0.010-0.020) 0.89 (0.59-1.36)
C10:1 0.030 (0.020-0.030) 0.020 (0.020-0.030) 0.91 (0.53-1.55) 0.010 (0.010-0.020) 0.010 (0.010-0.020) 1.15 (0.69-1.91)
C12 0.020 (0.010-0.030) 0.020 (0.010-0.020) 0.56 (0.36-0.85)* 0.010 (0.010-0.010) 0.010 (0.010-0.020) 1.17 (0.84-1.63)
C12:1 0.020 (0.010-0.020) 0.020 (0.010-0.020) 0.73 (0.45-1.20) 0.010 (0.010-0.010) 0.010 (0.010-0.010) 1.08 (0.54-2.14)
C14 0.030 (0.020-0.040) 0.030 (0.020-0.040) 0.72 (0.48-1.07) 0.010 (0.010-0.030) 0.010 (0.010-0.030) 1.07 (0.82-1.40)
C14-OH 0.010 (0.010-0.010) 0.010 (0.010-0.010) 0.12 (0.01-1.03) 0.010 (0.010-0.010) 0.010 (0.010-0.010) 1.89 (0.66-5.44)
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C14:1 0.020 (0.010-0.030) 0.020 (0.010-0.030) 0.78 (0.52-1.15) 0.010 (0.010-0.010) 0.010 (0.010-0.010) 1.32 (0.81-2.16)
C14:2 0.010 (0.010-0.010) 0.010 (0.010-0.010) 0.73 (0.36-1.48) 0.010 (0.000-0.010) 0.010 (0.000-0.010) 0.64 (0.11-3.56)
C16 0.220 (0.160-0.330) 0.200 (0.140-0.300) 0.74 (0.53-1.04) 0.030 (0.020-0.140) 0.040 (0.020-0.240) 1.08 (0.94-1.25)
C16-OH 0.010 (0.010-0.010) 0.010 (0.010-0.010) 0.58 (0.19-1.78) 0.000 (0.000-0.010) 0.010 (0.000-0.010) 2.42 (0.68-8.65)
C16:1 0.020 (0.010-0.030) 0.020 (0.010-0.020) 0.72 (0.47-1.10) 0.005 (0.000-0.010) 0.010 (0.000-0.010) 0.90 (0.55-1.48)
C16:1-OH 0.020 (0.020-0.030) 0.020 (0.010-0.030) 0.70 (0.46-1.08) 0.000 (0.000-0.010) 0.010 (0.000-0.010) 0.89 (0.57-1.40)
C18 0.170 (0.110-0.230) 0.165 (0.110-0.250) 0.95 (0.67-1.34) 0.045 (0.020-0.240) 0.105 (0.030-0.270) 1.17 (0.99-1.37)
C18-OH 0.010 (0.000-0.010) 0.000 (0.000-0.010) 0.32 (0.30-3.39) 0.000 (0.000-0.010) 0.010 (0.000-0.010) 1.65 (0.26-10.28)
C18:1 0.140 (0.090-0.210) 0.145 (0.080-0.210) 0.94 (0.71-1.26) 0.010 (0.010-0.030) 0.010 (0.010-0.050) 1.12 (0.93-1.36)
C18:1-OH 0.010 (0.010-0.010) 0.010 (0.010-0.010) 0.94 (0.71-1.26) 0.000 (0.000-0.010) 0.000 (0.000-0.010) 0.41 (0.05-3.18)
C18:2 0.040 (0.030-0.060) 0.040 (0.030-0.060) 0.90 (0.64-1.28) 0.000 (0.000-0.010) 0.000 (0.000-0.010) 0.87 (0.55-1.36)

IQR= Interquartile range
Note: Median (IQR) was calculated using non-transformed variables. Univariate logistic regression was performed using log-transformed variables.
*Marginally significant (0.0016 < α< 0.05); **Significant (Bonferroni correction <0.0016)

 Correlation was assessed for maternal and cord blood metabolite measurements (Table 3). Within the full study population, 
significant correlation between maternal and cord blood measurements was found for a variety of short, medium, and long chain 
acylcarnitines. When examined separately, term infants within the cohort displayed significant correlation for 14 acylcarnitines, 
including short, medium, and long chain acylcarnitines. Likewise, preterm infants displayed significant correlation for 10 acylcar-
nitines across the spectrum of chain lengths. 

Table 3: Association between maternal and cord metabolite measurements.
Metabolite Total Population Term Preterm

p-value R2 p-value R2 p-value R2
C0 0.125 0.008 0.688 0.001 0.155 0.014
C2 <1.00x10-11** 0.364 <1.00x10-11** 0.439 <1.00x10-11** 0.292
C3 0.003* 0.029 0.096 0.019 0.016* 0.038
C3-DC 2.04x10-6** 0.073 0.003* 0.059 1.39x10-4** 0.094
C4 7.80x10-4** 0.037 0.052 0.025 0.010* 0.044
C4-DC 4.20x10-10** 0.123 9.74x10-7** 0.150 9.56x10-6** 0.124
C4-OH 0.054 0.012 0.847 <0.001 0.009* 0.045
C5 7.27x10-6** 0.065 7.00x10-4** 0.075 0.003* 0.059
C5:1 9.68x10-8** 0.091 7.47x10-5** 0.101 1.41x10-4** 0.094
C5-DC 0.030* 0.016 0.046* 0.027 0.248 0.009
C5-OH 3.02x10-7** 0.084 7.79x10-4** 0.074 1.36x10-4** 0.094
C6 4.42x10-9** 0.109 3.42x10-5** 0.110 9.40x10-6** 0.125
C6-DC <1.00x10-11** 0.377 <1.00x10-11** 0.378 <1.00x10-11** 0.338
C8 8.53x10-4** 0.038 0.009* 0.047 0.022* 0.036
C8:1 1.00x10-11** 0.144 6.53x10-7** 0.154 2.70x10-6** 0.139
C10 1.96x10-4** 0.046 0.001** 0.070 0.041* 0.029
C10:1 2.15x10-4** 0.045 0.002** 0.066 0.032* 0.031
C12 0.045 0.016 0.089 0.023 0.209 0.127
C12:1 1.96x10-5** 0.060 3.01x10-4** 0.086 0.011* 0.043
C14 0.003* 0.030 0.022* 0.037 0.053 0.026
C14-OH 0.675 <0.001 0.820 <0.001 0.140 0.020
C14:1 1.49x10-4** 0.032 3.82x10-4** 0.101 0.044* 0.035
C14:2 0.791 <0.001 0.461 0.006 0.669 0.002
C16 2.26x10-4** 0.045 9.92x10-4** 0.071 0.036* 0.029
C16-OH 0.069 0.023 0.523 0.006 1.82x10-4** 0.174
C16:1 3.22x10-4** 0.079 0.003* 0.116 0.050 0.045
C16:1-OH 0.026* 0.032 0.494 0.007 0.014* 0.073
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C18 1.93x10-4** 0.046 0.002* 0.064 0.025 0.033
C18-OH 0.053 0.046 0.780 0.002 0.005* 0.180
C18:1 6.80x10-10** 0.132 1.01x10-6** 0.162 9.80x10-5** 0.110
C18:1-OH 0.161 0.015 0.985 <0.001 0.039* 0.059
C18:2 0.003* 0.068 0.020* 0.085 0.090 0.042

Note: General linear regression was performed using log-transformed variables.
*Marginally significant (0.0016 < α< 0.05); **Significant (Bonferroni correction <0.0016)

 Preterm birth status was modeled by the level of each acylcarnitine found to be significant upon univariate logistic regres-
sion. Separate models were created for maternal metabolite levels, infant metabolite levels, and the combination of maternal and 
infant levels. Models were compared employing ROC and the corresponding AUC, with the model employing both maternal and 
infant metabolite levels yielding the greatest AUC (Figure 1). The combination model performed significantly better than the mater-
nal model alone (p-value 0.007); no further significant differences were observed between ROC values. Sensitivity and specificity 
of the combined model were 0.826 and 0.572, respectively (Table 4). 

Table 4: Optimal cut-off points for maternal metabolites only, cord metabolites only, and maternal and cord metabolites models.
Model Maximum Youden’s J Statistic Sensitivity Specificity
Maternal metabolites 0.277 0.476 0.801
Cord metabolites 0.369 0.719 0.65
Maternal and cord metabolites 0.398 0.826 0.572

Discussion

Our group has previously shown that metabolites measured from dried blood spots collected in the United States between 24 and 72 
hours of life vary significantly based upon GA and birth weight[18]. Furthermore, a combination of these metabolite values reliably 
predicted GA in this same Iowa population[5]; this finding was shown in parallel study populations in California[4] and Canada[7]. 
Separately, Alexandre et al[6] demonstrated the ability to stratify term infants from infants born less than 32 weeks based upon me-
tabolite profiles of 15 mother-infant dyads using umbilical cord blood, umbilical arterial blood, and maternal venous blood drawn at 
delivery. In a study of the urinary profile of neonates by nuclear magnetic resonance spectroscopy, Diaz et al[19] revealed significant 
differences in preterm infants, with the ability to segregate preterm neonates from other stressed states, indicating a signature profile 
in the preterm infant. A variety of metabolic adaptations are required during pregnancy in order to support the developing fetus, 
with specific adaptions shifting as gestational age advances. The body must first support organogenesis, followed by growth and 
maturation of the fetus[17]; this continuum of change over gestation makes it biologically plausible that metabolite profile may assist 
with gestational dating. Amidst the differential metabolic background of the gestating fetus, previous work has linked an increase in 
oxidative stress to preterm premature rupture of membranes[20] and preterm delivery[21]. In the setting of the preterm neonate, mater-
nal infection often compounds the oxidative stress that is generated by transition of the fetus from the uterine environment of low 
oxygen to the high-oxygen ex-utero environment[21]. In addition to a greater degree of insult than their term counterparts, preterm 
infants have impaired ability to detoxify oxidative stress due to liver immaturity[10] and pulmonary antioxidant system immaturity[21]. 
Furthermore, premature separation from placental glucose infusion, in the setting of deficient glycogen stores, results in postnatal 
use of alternative energy-generating pathways in the preterm neonate; these alternative mechanisms result in differences in ketone 
and fatty acid concentrations between term and preterm infants. Thus, premature infants have a differential metabolic foundation, 
increased oxidative stress, decreased ability to detoxify oxidative insults, and differential use / generation of glucose and fatty acids. 
It is therefore reasonable to suspect that the metabolic profile may be used to stratify infant-mother dyads by GA. 
 The present study of 300 mother-infant dyads increases the body of work to suggest that metabolite data can be used in 
order to stratify term and preterm infants. A variety of acylcarnitine values were found to vary between the populations, consistent 
with previous work to this effect[4-7,19]. Interestingly, while most maternal blood metabolites were strongly correlated with cord 
blood metabolites, the specific metabolites that delineated term from preterm status differed between cord and maternal samples. In 
fact, only a single small chain acylcarnitine (C6-DC) was significantly different between preterm vs term infants in both maternal 
and cord blood samples. This differential underscores the fact that, while highly correlated, the metabolite utilization is disparate 
between mother and infant[22], consistent with both passive diffusion across the placenta, as well as active transport mechanisms 
directed by fetal requirements[23]. In addition to correlation between mother and infant metabolite levels, preterm birth status was 
stratified successfully in our cohort by a combination of maternal and infant metabolite values. While many of the differences ob-
served in metabolite level are unlikely to have a strong biological impact, their aggregated values form a signature to differentiate 
between term and preterm status. This method of analysis may be useful in determining the burden of preterm birth in LMIC, where 
traditional estimates of GA are challenging to obtain. 
 This study is strengthened by its relatively robust numbers, with both preterm and term infants represented. The exclusion 
of diabetic mothers from the cohort reduces the potential confounding effect of metabolic disease, shown elsewhere to be linked to 
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metabolic profile in preterm birth[24,25]. One notable limitation is 
the use of retrospective banked samples that were not primari-
ly collected for metabolite analysis. While this did not appear 
to affect our results for acylcarnitines, amino acid values were 
vastly different from previouslyobserved values. While prospec-
tive collection would be ideal, that is not always realistic; there-
fore, it is encouraging that samples collected retrospectively still 
demonstrate value when examining metabolite differences. 
 Infant and maternal metabolite levels are highly cor-
related and may reliably stratify term vs preterm birth status. The 
ability of maternal metabolite data to delineate term vs preterm 
status bears further investigation and validation. As DBS spot-
ting and storage are feasible in the setting of LMIC, this may 
prove a useful mechanism for delineating the burden of preterm 
birth in this setting. 
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